Cellosaurus logo
expasy logo

Cellosaurus WA09 (CVCL_9773)

[Text version]
Cell line name WA09
Synonyms WA 09; WA-09; WA9; H9; H9.hESCs; H9 ESC; H9 hES; H9ES; GE09; WAe003-A; WICELLe003-A; WAe009-A; WA09-PCBC; PCBC02hse2014030502; SC14-067; UKERe008-A
Accession CVCL_9773
Resource Identification Initiative To cite this cell line use: WA09 (RRID:CVCL_9773)
Comments Group: Clinical grade pluripotent cell line.
Part of: ENCODE project common cell types; tier 3.
Part of: NHBLI Progenitor Cell Biology Consortium (PCBC) collection.
From: University of Wisconsin; Madison; USA.
Registration: NIH Human Embryonic Stem Cell Registry; NIHhESC-10-0062.
Registration: Swiss research registry; BAG-hES-IMP-0016.
Registration: UK Stem Cell Bank (UKSCB); Steering comm. appl. SCSC06-18/SCSC11-06.
Omics: Array-based CGH.
Omics: Deep exome analysis.
Omics: Deep phosphoproteome analysis.
Omics: Deep proteome analysis.
Omics: DNA methylation analysis.
Omics: Genome sequenced.
Omics: H2AK5ac ChIP-seq epigenome analysis.
Omics: H2BK12ac ChIP-seq epigenome analysis.
Omics: H2BK15ac ChIP-seq epigenome analysis.
Omics: H2BK5ac ChIP-seq epigenome analysis.
Omics: H3K18ac ChIP-seq epigenome analysis.
Omics: H3K23ac ChIP-seq epigenome analysis.
Omics: H3K23me2 ChIP-seq epigenome analysis.
Omics: H3K27ac ChIP-seq epigenome analysis.
Omics: H3K27me3 ChIP-seq epigenome analysis.
Omics: H3K36me3 ChIP-seq epigenome analysis.
Omics: H3K4ac ChIP-seq epigenome analysis.
Omics: H3K4me1 ChIP-seq epigenome analysis.
Omics: H3K4me2 ChIP-seq epigenome analysis.
Omics: H3K4me3 ChIP-seq epigenome analysis.
Omics: H3K56ac ChIP-seq epigenome analysis.
Omics: H3K79me1 ChIP-seq epigenome analysis.
Omics: H3K79me2 ChIP-seq epigenome analysis.
Omics: H3K9ac ChIP-seq epigenome analysis.
Omics: H3K9me3 ChIP-seq epigenome analysis.
Omics: H4K20me1 ChIP-seq epigenome analysis.
Omics: H4K5ac ChIP-seq epigenome analysis.
Omics: H4K8ac ChIP-seq epigenome analysis.
Omics: H4K91ac ChIP-seq epigenome analysis.
Omics: Mitochondrial proteome analysis.
Omics: SNP array analysis.
Omics: Transcriptome analysis by microarray.
Omics: Transcriptome analysis by RNAseq.
Omics: Transcriptome analysis by serial analysis of gene expression (SAGE).
Anecdotal: WA01, WA07, WA09, WA13 and WA14 were the first human embryonic stem cells to be established.
Derived from site: In situ; Blastocyst; UBERON=UBERON_0000358.
Cell type: Embryonic stem cell; CL=CL_0002322.
Sequence variations
  • Mutation; HGNC; HGNC:11998; TP53; Simple; p.Pro151Ser (c.451C>T); ClinVar=VCV000012370; Zygosity=Unspecified; Note=Somatic mutation acquired during proliferation (PubMed=28445466).
  • Mutation; HGNC; HGNC:11998; TP53; Simple; p.Arg181His (c.542G>A); ClinVar=VCV000142320; Zygosity=Unspecified; Note=Somatic mutation acquired during proliferation (PubMed=28445466).
  • Mutation; HGNC; HGNC:11998; TP53; Simple; p.Arg248Gln (c.743G>A); ClinVar=VCV000012356; Zygosity=Unspecified; Note=Somatic mutation acquired during proliferation (PubMed=28445466).
  • Mutation; HGNC; HGNC:11998; TP53; Simple; p.Arg267Trp (c.799C>T); ClinVar=VCV000141764; Zygosity=Unspecified; Note=Somatic mutation acquired during proliferation (PubMed=28445466).
HLA typing Source: PubMed=16919167
Class I
HLA-AA*02:03
HLA-BB*35,44
HLA-CC*04,07
Class II
HLA-DQDQB1*05,06
HLA-DRDRB1*15,16:01
DRB5*01
Species of origin Homo sapiens (Human) (NCBI Taxonomy: 9606)
Hierarchy Children:
CVCL_RU14 (4D20.8)CVCL_RU17 (4SKEL20)CVCL_RU15 (7PEND24)
CVCL_RU16 (7SMOO32)CVCL_RX99 (BC1 [Human NSC])CVCL_C9EC (CHOPe003-A)
CVCL_A1AT (CSUe011-A)CVCL_RU20 (EN7)CVCL_GS51 (ENStem-A)
CVCL_E4CE (EYQ2-20)CVCL_C4EK (H9 AAVS1-TRE3G-NGN2)CVCL_U160 (H9 Cre-LoxP)
CVCL_U161 (H9 hNanog-pGZ)CVCL_U162 (H9 hOct4-pGZ)CVCL_U163 (H9 inGFPhES)
CVCL_C4EP (H9 PINK1-/-)CVCL_C8ZD (H9 Rex1-EGFP)CVCL_JL69 (H9 RM)
CVCL_U164 (H9 Syn-GFP)CVCL_U165 (H9-hTnnTZ-pGZ-D2)CVCL_IU37 (H9-NSC)
CVCL_JW66 (H9-SOX2-GFP)CVCL_D1GU (H9-WISP3KO)CVCL_C0VX (H9EOS)
CVCL_JL61 (H9Keap1KO-A31)CVCL_JJ84 (H9Nrf2KO-A13)CVCL_C5TU (H9SNTA1KO)
CVCL_UZ63 (hESderK/E6E7 clK)CVCL_B0JB (ID1-V-LUC hES)CVCL_GR22 (iPS-MSC-H9)
CVCL_U171 (LT2e-H9CAGGFP)CVCL_RU21 (MEL2)CVCL_U176 (NSC-H9)
CVCL_D0QJ (SDQLCHe001-A)CVCL_RU22 (SK11)CVCL_RU23 (SM22)
CVCL_RU24 (SM28)CVCL_RV29 (SM30)CVCL_D8GA (Ubigene H9 CDYL KO)
CVCL_D8GB (Ubigene H9 FGF12 KO)CVCL_D8GC (Ubigene H9 FGF14 KO)CVCL_D8GD (Ubigene H9 MIR503HG KO)
CVCL_D8GE (Ubigene H9 SIRT2 KO)CVCL_C7FI (UKERe008-A-1)CVCL_C7FJ (UKERe008-A-2)
CVCL_C7FK (UKERe008-A-3)CVCL_C7FL (UKERe008-A-4)CVCL_C7FM (UKERe008-A-5)
CVCL_C7FN (UKERe008-A-6)CVCL_C7FP (UKERe008-A-7)CVCL_C7FQ (UKERe008-A-8)
CVCL_C7FR (UKERe008-A-9)CVCL_RU25 (W10)CVCL_B5ZJ (WA09 CRX+/tdTomato)
CVCL_GQ06 (WA09 MIXL1-2A-eGFP)CVCL_C811 (WAe009-A-1)CVCL_C100 (WAe009-A-10)
CVCL_UM37 (WAe009-A-11)CVCL_UG28 (WAe009-A-12)CVCL_UG29 (WAe009-A-13)
CVCL_UM38 (WAe009-A-14)CVCL_WW89 (WAe009-A-16)CVCL_ZB39 (WAe009-A-17)
CVCL_ZC37 (WAe009-A-18)CVCL_WJ41 (WAe009-A-19)CVCL_D6K3 (WAe009-A-1A)
CVCL_D6K4 (WAe009-A-1B)CVCL_D1GC (WAe009-A-1C)CVCL_D1GD (WAe009-A-1D)
CVCL_D6SC (WAe009-A-1E)CVCL_D6SA (WAe009-A-1F)CVCL_D6PC (WAe009-A-1G)
CVCL_D6SD (WAe009-A-1H)CVCL_D6SE (WAe009-A-1S)CVCL_D6SF (WAe009-A-1T)
CVCL_D6SG (WAe009-A-1U)CVCL_D6SB (WAe009-A-1Y)CVCL_D6SH (WAe009-A-1Z)
CVCL_C812 (WAe009-A-2)CVCL_WJ42 (WAe009-A-20)CVCL_YJ22 (WAe009-A-21)
CVCL_ZB40 (WAe009-A-22)CVCL_WZ23 (WAe009-A-23)CVCL_YN82 (WAe009-A-24)
CVCL_ZB41 (WAe009-A-25)CVCL_A1YF (WAe009-A-26)CVCL_ZB42 (WAe009-A-28)
CVCL_ZB43 (WAe009-A-29)CVCL_E4DC (WAe009-A-2A)CVCL_E4DD (WAe009-A-2B)
CVCL_ZB44 (WAe009-A-30)CVCL_ZB45 (WAe009-A-31)CVCL_ZB46 (WAe009-A-32)
CVCL_ZB47 (WAe009-A-33)CVCL_ZB48 (WAe009-A-34)CVCL_ZB49 (WAe009-A-35)
CVCL_ZX63 (WAe009-A-36)CVCL_A1PJ (WAe009-A-37)CVCL_A4DV (WAe009-A-38)
CVCL_A7IL (WAe009-A-39)CVCL_VE22 (WAe009-A-4)CVCL_WM07 (WAe009-A-40)
CVCL_A1YG (WAe009-A-41)CVCL_A4DW (WAe009-A-42)CVCL_A9XX (WAe009-A-43)
CVCL_A1MY (WAe009-A-45)CVCL_A4UC (WAe009-A-46)CVCL_A4UB (WAe009-A-47)
CVCL_A4TZ (WAe009-A-48)CVCL_A7HB (WAe009-A-49)CVCL_DQ84 (WAe009-A-5)
CVCL_A5EP (WAe009-A-50)CVCL_A7HC (WAe009-A-51)CVCL_A7HD (WAe009-A-52)
CVCL_A7HE (WAe009-A-53)CVCL_A7HF (WAe009-A-54)CVCL_A7HG (WAe009-A-55)
CVCL_A5EQ (WAe009-A-56)CVCL_A7NC (WAe009-A-58)CVCL_A7RX (WAe009-A-59)
CVCL_DQ83 (WAe009-A-6)CVCL_A8DI (WAe009-A-60)CVCL_A7RW (WAe009-A-61)
CVCL_A7RV (WAe009-A-62)CVCL_B3RP (WAe009-A-67)CVCL_B0FR (WAe009-A-69)
CVCL_VE23 (WAe009-A-7)CVCL_B3PX (WAe009-A-70)CVCL_B0JR (WAe009-A-71)
CVCL_B3SB (WAe009-A-72)CVCL_B3S6 (WAe009-A-73)CVCL_B3S7 (WAe009-A-74)
CVCL_B3SA (WAe009-A-75)CVCL_B5QI (WAe009-A-76)CVCL_B5QJ (WAe009-A-78)
CVCL_B5QK (WAe009-A-79)CVCL_VE36 (WAe009-A-8)CVCL_B5QL (WAe009-A-80)
CVCL_B5QM (WAe009-A-81)CVCL_B5QN (WAe009-A-82)CVCL_C0GL (WAe009-A-83)
CVCL_C9JC (WAe009-A-84)CVCL_C0JE (WAe009-A-86)CVCL_C0JD (WAe009-A-88)
CVCL_C1JM (WAe009-A-89)CVCL_VE37 (WAe009-A-9)CVCL_C1JN (WAe009-A-91)
CVCL_C4RV (WAe009-A-92)CVCL_C6U6 (WAe009-A-93)CVCL_C4P7 (WAe009-A-94)
CVCL_C3LH (WAe009-A-95)CVCL_C3LI (WAe009-A-96)CVCL_C3LJ (WAe009-A-97)
CVCL_C9GZ (WAe009-A-98)CVCL_C6TU (WAe009-A-99)CVCL_C9J9 (WAe009-A-A)
CVCL_C9H0 (WAe009-A-B)CVCL_C9JA (WAe009-A-C)CVCL_D6KQ (WAe009-A-D)
CVCL_WN07 (WAe009-A-G)CVCL_C7FS (WAe009-A-H)CVCL_C3RE (WAe009-A-J)
CVCL_C0CX (WAe009-A-L)CVCL_C9JB (WAe009-A-N)CVCL_VP31 (WAe009-A-O)
CVCL_C9J7 (WAe009-A-P)CVCL_C9J8 (WAe009-A-Q)CVCL_B5ZI (WAe009-A-R)
CVCL_C9GY (WAe009-A-U)CVCL_D6K5 (WAe009-A-W)CVCL_D6K6 (WAe009-A-Z)
CVCL_RU26 (Z11)
Sex of cell Female
Age at sampling Blastocyst stage
Category Embryonic stem cell
STR profile Source(s): PubMed=16919167; PubMed=29246576; WiCell=wa09

Markers:
AmelogeninX
CSF1PO11
D2S133818,24
D3S135813,16
D5S81811,12
D7S8209,11
D8S11798,14
D13S3179
D16S53912,13
D18S5113
D19S43312,15
D21S1130
FGA26,28
Penta D9,13
Penta E11,14
TH019.3
TPOX10,11
vWA17

Run an STR similarity search on this cell line
Web pages http://genome.ucsc.edu/ENCODE/protocols/cell/human/BG02ES_and_H9ES_Myers_protocols.pdf
https://strap.nci.nih.gov/celline_detail.php?sample_id=88
https://stemcelldb.nih.gov/cellLineDetails.do?id=13
https://news.wisc.edu/nih-reapproves-wicells-h9-and-three-other-wisconsin-stem-cell-lines-for-federally-funded-research/
Publications

PubMed=9804556; DOI=10.1126/science.282.5391.1145
Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M.
Embryonic stem cell lines derived from human blastocysts.
Science 282:1145-1147(1998)

PubMed=14745950; DOI=10.1002/dvdy.10431
Carpenter M.K., Rosler E.S., Fisk G.J., Brandenberger R., Ares X., Miura T., Lucero M.T., Rao M.S.
Properties of four human embryonic stem cell lines maintained in a feeder-free culture system.
Dev. Dyn. 229:243-258(2004)

PubMed=16388305; DOI=10.1038/nbt1177
Ludwig T.E., Levenstein M.E., Jones J.M., Berggren W.T., Mitchen E.R., Frane J.L., Crandall L.J., Daigh C.A., Conard K.R., Piekarczyk M.S., Llanas R.A., Thomson J.A.
Derivation of human embryonic stem cells in defined conditions.
Nat. Biotechnol. 24:185-187(2006)

PubMed=16919167; DOI=10.1186/1741-7007-4-28; PMCID=PMC1601965
Josephson R., Sykes G.R., Liu Y., Ording C.J., Xu W.-N., Zeng X.-M., Shin S., Loring J.F., Maitra A., Rao M.S., Auerbach J.M.
A molecular scheme for improved characterization of human embryonic stem cell lines.
BMC Biol. 4:28.1-28.13(2006)

PubMed=17570852; DOI=10.1186/gb-2007-8-6-r113; PMCID=PMC2394759
Hirst M., Delaney A., Rogers S.A., Schnerch A., Persaud D.R., O'Connor M.D., Zeng T., Moksa M., Fichter K., Mah D., Go A., Morin R.D., Baross A., Zhao Y.-J., Khattra J., Prabhu A.-L., Pandoh P., McDonald H., Asano J.K., Dhalla N., Ma K., Lee S., Ally A., Chahal N., Menzies S., Siddiqui A., Holt R.A., Jones S.J.M., Gerhard D.S., Thomson J.A., Eaves C.J., Marra M.A.
LongSAGE profiling of nine human embryonic stem cell lines.
Genome Biol. 8:R113.1-R113.12(2007)

PubMed=17572666; DOI=10.1038/nbt1318
Adewumi O., Aflatoonian B., Ahrlund-Richter L., Amit M., Andrews P.W., Beighton G., Bello P.A., Benvenisty N., Berry L.S., Bevan S., Blum B., Brooking J., Chen K.G., Choo A.B.-H., Churchill G.A., Corbel M., Damjanov I., Draper J.S., Dvorak P., Emanuelsson K., Fleck R.A., Ford A., Gertow K., Gertsenstein M., Gokhale P.J., Hamilton R.S., Hampl A., Healy L.E., Hovatta O., Hyllner J., Imreh M.P., Itskovitz-Eldor J., Jackson J., Johnson J.L., Jones M., Kee K., King B.L., Knowles B.B., Lako M., Lebrin F., Mallon B.S., Manning D., Mayshar Y., McKay R.D.G., Michalska A.E., Mikkola M., Mileikovsky M., Minger S.L., Moore H.D., Mummery C.L., Nagy A., Nakatsuji N., O'Brien C.M., Oh S.K.-W., Olsson C., Otonkoski T., Park K.-Y., Passier R., Patel H., Patel M.J., Pedersen R., Pera M.F., Piekarczyk M.S., Reijo Pera R.A., Reubinoff B.E., Robins A.J., Rossant J., Rugg-Gunn P., Schulz T.C., Semb H., Sherrer E.S., Siemen H., Stacey G.N., Stojkovic M., Suemori H., Szatkiewicz J., Turetsky T.T., Tuuri T., van den Brink S., Vintersten K., Vuoristo S., Ward-van Oostwaard D., Weaver T.A., Young L.A., Zhang W.-D.
International Stem Cell Initiative
Characterization of human embryonic stem cell lines by the International Stem Cell Initiative.
Nat. Biotechnol. 25:803-816(2007)

PubMed=20641038; DOI=10.1002/stem.471; PMCID=PMC2996086
Gutierrez-Aranda I., Ramos-Mejia V., Bueno C., Munoz-Lopez M., Real P.J., Macia A., Sanchez L., Ligero G., Garcia-Parez J.L., Menendez P.
Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection.
Stem Cells 28:1568-1570(2010)

PubMed=20736931; DOI=10.1038/mt.2010.179; PMCID=PMC2997587
Ramos-Mejia V., Melen Frajlich G.J., Sanchez L., Gutierrez-Aranda I., Ligero G., Cortes J.L., Real P.J., Bueno C., Menendez P.
Nodal/activin signaling predicts human pluripotent stem cell lines prone to differentiate toward the hematopoietic lineage.
Mol. Ther. 18:2173-2181(2010)

PubMed=21295703; DOI=10.1016/j.cell.2010.12.032; PMCID=PMC3063454
Bock C., Kiskinis E., Verstappen G., Gu H.-C., Boulting G.L., Smith Z.D., Ziller M.J., Croft G.F., Amoroso M.W., Oakley D.H., Gnirke A., Eggan K.C., Meissner A.
Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines.
Cell 144:439-452(2011)

PubMed=21983960; DOI=10.1038/nmeth.1699; PMCID=PMC3432645
Phanstiel D.H., Brumbaugh J., Wenger C.D., Tian S.-L., Probasco M.D., Bailey D.J., Swaney D.L., Tervo M.A., Bolin J.M., Ruotti V., Stewart R., Thomson J.A., Coon J.J.
Proteomic and phosphoproteomic comparison of human ES and iPS cells.
Nat. Methods 8:821-827(2011)

PubMed=21936705; DOI=10.1089/scd.2011.0400
Ramos-Mejia V., Fernandez A.F., Ayllon V., Real P.J., Bueno C., Anderson P., Martin F., Fraga M.F., Menendez P.
Maintenance of human embryonic stem cells in mesenchymal stem cell-conditioned media augments hematopoietic specification.
Stem Cells Dev. 21:1549-1558(2012)

PubMed=22514597; DOI=10.1371/journal.pone.0030743; PMCID=PMC3326006
Sandt C., Feraud O., Oudrhiri N., Bonnet M.-L., Meunier M.-C., Valogne Y., Bertrand A., Raphael M., Griscelli F., Turhan A.G., Dumas P., Bennaceur-Griscelli A.
Identification of spectral modifications occurring during reprogramming of somatic cells.
PLoS ONE 7:E30743-E30743(2012)

PubMed=22802639; DOI=10.1073/pnas.1209979109; PMCID=PMC3411998
Kajiwara M., Aoi T., Okita K., Takahashi R., Inoue H., Takayama N., Endo H., Eto K., Toguchida J., Uemoto S., Yamanaka S.
Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells.
Proc. Natl. Acad. Sci. U.S.A. 109:12538-12543(2012)

PubMed=23117585; DOI=10.1016/j.scr.2012.09.002; PMCID=PMC3590800
Mallon B.S., Chenoweth J.G., Johnson K.R., Hamilton R.S., Tesar P.J., Yavatkar A.S., Tyson L.J., Park K., Chen K.G., Fann Y.-C., McKay R.D.G.
StemCellDB: the human pluripotent stem cell database at the National Institutes of Health.
Stem Cell Res. 10:57-66(2013)

PubMed=24259714; DOI=10.1073/pnas.1319061110; PMCID=PMC3870695
Koyanagi-Aoi M., Ohnuki M., Takahashi K., Okita K., Noma H., Sawamura Y., Teramoto I., Narita M., Sato Y., Ichisaka T., Amano N., Watanabe A., Morizane A., Yamada Y., Sato T., Takahashi J., Yamanaka S.
Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells.
Proc. Natl. Acad. Sci. U.S.A. 110:20569-20574(2013)

PubMed=27293150; DOI=10.1016/j.stemcr.2016.05.006; PMCID=PMC4944587
Salomonis N., Dexheimer P.J., Omberg L., Schroll R., Bush S., Huo J.S., Schriml L.M., Sui S.H., Keddache M., Mayhew C.N., Shanmukhappa S.K., Wells J.M., Daily K., Hubler S., Wang Y.-L., Zambidis E.T., Margolin A.A., Hide W.A., Hatzopoulos A.K., Malik P., Cancelas J.A., Aronow B.J., Lutzko C.
Integrated genomic analysis of diverse induced pluripotent stem cells from the Progenitor Cell Biology Consortium.
Stem Cell Reports 7:110-125(2016)

PubMed=27476965; DOI=10.1016/j.stem.2016.06.019
Nishizawa M., Chonabayashi K., Nomura M., Tanaka A., Nakamura M., Inagaki A., Nishikawa M., Takei I., Oishi A., Tanabe K., Ohnuki M., Yokota H., Koyanagi-Aoi M., Okita K., Watanabe A., Takaori-Kondo A., Yamanaka S., Yoshida Y.
Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity.
Cell Stem Cell 19:341-354(2016)

PubMed=27688775; DOI=10.1155/2016/3826249; PMCID=PMC5023833
Nagaria P.K., Robert C., Park T.S., Huo J.S., Zambidis E.T., Rassool F.V.
High-fidelity reprogrammed human IPSCs have a high efficacy of DNA repair and resemble hESCs in their MYC transcriptional signature.
Stem Cells Int. 2016:3826249.1-3826249.14(2016)

PubMed=28435121; DOI=10.1016/j.jprot.2017.04.017
Shekari F., Nezari H., Larijani M.R., Han C.-L., Baharvand H., Chen Y.-J., Salekdeh G.H.
Proteome analysis of human embryonic stem cells organelles.
J. Proteomics 162:108-118(2017)

PubMed=28445466; DOI=10.1038/nature22312; PMCID=PMC5427175
Merkle F.T., Ghosh S., Kamitaki N., Mitchell J., Avior Y., Mello C., Kashin S., Mekhoubad S., Ilic D., Charlton M., Saphier G., Handsaker R.E., Genovese G., Bar S., Benvenisty N., McCarroll S.A., Eggan K.C.
Human pluripotent stem cells recurrently acquire and expand dominant negative p53 mutations.
Nature 545:229-233(2017)

PubMed=28664172; DOI=10.1016/j.dib.2017.05.036; PMCID=PMC5480819
Shekari F., Nezari H., Chen Y.-J., Baharvand H., Salekdeh G.H.
Data for whole and mitochondrial proteome of human embryonic stem cells.
Data Brief 13:371-376(2017)

PubMed=29246576; DOI=10.1016/j.scr.2017.08.004
Domingo-Reines J., Lopez-Ornelas A., Montes R., Romero T., Rodriguez-Llamas J.L., Lara-Rodarte R., Gonzalez-Pozas F., Ayllon V., Menendez P., Velasco I., Ramos-Mejia V.
Hoxa9 and EGFP reporter expression in human embryonic stem cells (hESC) as useful tools for studying human development.
Stem Cell Res. 25:286-290(2017)

PubMed=29861859; DOI=10.18632/oncotarget.25353; PMCID=PMC5982739
Panova A.V., Bogomazova A.N., Lagarkova M.A., Kiselev S.L.
Epigenetic reprogramming by naive conditions establishes an irreversible state of partial X chromosome reactivation in female stem cells.
Oncotarget 9:25136-25147(2018)

PubMed=30388422; DOI=10.1016/j.stem.2018.10.009
Ludwig T.E., Kujak A., Rauti A., Andrzejewski S., Langbehn S., Mayfield J., Fuller J., Yashiro Y., Hara Y., Bhattacharyya A.
20 years of human pluripotent stem cell research: it all started with five lines.
Cell Stem Cell 23:644-648(2018)

PubMed=35805069; DOI=10.3390/cells11131984; PMCID=PMC9265327
Molina-Ruiz F.J., Introna C., Bombau G., Galofre M., Canals J.M.
Standardization of cell culture conditions and routine genomic screening under a quality management system leads to reduced genomic instability in hPSCs.
Cells 11:1984.1-1984.25(2022)

Cross-references
Cell line collections (Providers) WiCell; wa09
WiCell; wa09-cgmp-material
WiCell; wa09-matched-research
WiCell; wa09-pcbc
Cell line databases/resources CLO; CLO_0037313
CCRID; 3101HUMSCSP302
CCRID; 3101HUMSCSP307
hPSCreg; WAe009-A
IGRhCellID; H9%20p25-2
IGRhCellID; H9%20p34
LINCS_LDP; ES-1001
NIHhESC; NIHhESC-10-0062
SKIP; SKIP001452
SKIP; SKIP001935
TOKU-E; 4223
Anatomy/cell type resources BTO; BTO_0006062
Biological sample resources 4DN; 4DNSR9WBB58Z
BioSample; SAMN03471903
BioSamples; SAMEA7769668
ENCODE; ENCBS013BRF
ENCODE; ENCBS061KRP
ENCODE; ENCBS113LZP
ENCODE; ENCBS140HIH
ENCODE; ENCBS156LDX
ENCODE; ENCBS220TZB
ENCODE; ENCBS277KDR
ENCODE; ENCBS298AAA
ENCODE; ENCBS299AAA
ENCODE; ENCBS300AAA
ENCODE; ENCBS315DEY
ENCODE; ENCBS375GFI
ENCODE; ENCBS377MXB
ENCODE; ENCBS399JWQ
ENCODE; ENCBS410BMR
ENCODE; ENCBS417MAQ
ENCODE; ENCBS477SFO
ENCODE; ENCBS485PGF
ENCODE; ENCBS532LWE
ENCODE; ENCBS616QKE
ENCODE; ENCBS656LSW
ENCODE; ENCBS692FVF
ENCODE; ENCBS703ZDS
ENCODE; ENCBS741LLD
ENCODE; ENCBS757OPX
ENCODE; ENCBS769EPD
ENCODE; ENCBS808UWK
ENCODE; ENCBS853WXF
ENCODE; ENCBS883RFB
ENCODE; ENCBS996IWU
CRISP screens repositories BioGRID_ORCS_Cell_line; 1321
Encyclopedic resources Wikidata; Q27555433
Gene expression databases GEO; GSM239975
GEO; GSM288333
GEO; GSM288335
GEO; GSM288397
GEO; GSM347923
GEO; GSM383878
GEO; GSM383879
GEO; GSM384100
GEO; GSM500936
GEO; GSM579901
GEO; GSM579902
GEO; GSM569191
GEO; GSM569192
GEO; GSM603054
GEO; GSM603055
GEO; GSM605307
GEO; GSM605310
GEO; GSM605314
GEO; GSM605316
GEO; GSM605324
GEO; GSM616127
GEO; GSM616128
GEO; GSM616129
GEO; GSM627785
GEO; GSM637777
GEO; GSM665037
GEO; GSM667608
GEO; GSM667609
GEO; GSM667610
GEO; GSM667611
GEO; GSM667612
GEO; GSM667613
GEO; GSM667616
GEO; GSM667619
GEO; GSM667620
GEO; GSM667621
GEO; GSM667622
GEO; GSM667623
GEO; GSM667625
GEO; GSM667626
GEO; GSM667628
GEO; GSM667629
GEO; GSM667630
GEO; GSM667631
GEO; GSM667632
GEO; GSM667633
GEO; GSM667634
GEO; GSM667635
GEO; GSM667636
GEO; GSM667637
GEO; GSM667638
GEO; GSM667639
GEO; GSM667640
GEO; GSM667643
GEO; GSM669899
GEO; GSM669901
GEO; GSM670053
GEO; GSM674603
GEO; GSM706044
GEO; GSM706059
GEO; GSM706060
GEO; GSM706061
GEO; GSM706062
GEO; GSM706063
GEO; GSM706064
GEO; GSM706066
GEO; GSM706071
GEO; GSM706076
GEO; GSM755488
GEO; GSM755491
GEO; GSM816629
GEO; GSM856731
GEO; GSM860961
GEO; GSM860962
GEO; GSM860963
GEO; GSM862733
GEO; GSM927236
GEO; GSM997555
GEO; GSM997556
GEO; GSM997557
GEO; GSM1040243
GEO; GSM1040313
GEO; GSM1084832
GEO; GSM1084835
GEO; GSM1084943
GEO; GSM1084944
GEO; GSM1084992
GEO; GSM1085015
GEO; GSM1215278
GEO; GSM1215279
GEO; GSM1227088
GEO; GSM1489249
GEO; GSM1489460
GEO; GSM1589800
GEO; GSM1589812
GEO; GSM1589932
GEO; GSM1589944
GEO; GSM1658377
Proteomic databases PRIDE; PXD003903
PRIDE; PXD006271
Entry history
Entry creation06-Jun-2012
Last entry update19-Dec-2024
Version number40