Cellosaurus logo
expasy logo

Cellosaurus publication CLPUB00133

Publication number CLPUB00133
Authors Georgiev G.P., Kiselev S.L., Lukanidin E.M.
Title Genes involved in the control of tumor progression and their possible use for gene therapy.
Citation Gene Ther. Mol. Biol. 1:381-398(1998)
Abstract Three major groups of genes may be used for cancer gene therapy: (i) oncogenes and tumor suppressor genes; (ii) genes involved in the control of tumor progression and metastasis; and (iii) genes encoding proteins protecting the organism from tumor cells. Each group contains numerous genes, and the discovery of new important genes is an exciting prospect in cancer research. We are working on the search and characterization of the genes over-or under-expressed in metastatic comparing to non-metastatic tumors of the same origin. Two mouse systems are being used: (i) VMR-0 (non-metastatic mammary adenocarcinoma cells) -VMR-100-Liv and VMR-100-Ov cells (metastatic preferentially to the liver or ovaries, respectively); and (ii) CSML-0 -CSML-100 (mammary adenocarcinoma cells non-metastatic and metastatic to the lungs, respectively). Several different genes were found to be over-expressed in metastatic cells, but only few of them were shown to be necessary and sufficient for maintaining the metastatic phenotype using stably transfected cells and/or transgenic animals. Among them are the mts1 and c-met genes. The mts1 gene, encoding a calcium-binding protein of 101 amino acids of the S-100 family, was extensively characterized. Its expression induced a number of changes in cell functions connected with cytoskeleton features, attachment properties of the cell, mesenchyme formation and possibly tumor vascularization. As a multifunctional regulator, the mts1 gene is a promising target for gene therapy of cancer. Other genes identified are over-expressed only in few metastatic tumors and do not seem to be connected directly with the acquisition of the metastatic phenotype. However, during the transfection experiments some interesting features emerged for these genes, raising the possibility of their exploitation in cancer gene therapy. The most interesting is the tag7 gene encoding a new cytokine, 182 amino acids long, with a far distant relation to cytokines of the TNF-Lymphotoxin family. The tag7 gene is expressed in lymphoid cells, in a limited set of other normal cells, and in few cancer cells including myelomas. The Tag7 protein is secreted to the culture medium and possesses a strong cytotoxic activity inducing apoptosis. VMR-0 cells were stably transfected with a construct containing the tag7 gene under control of the CMV promoter. The original VMR-0 tumors killed mice in one month after subcutaneous transplantation; animals displayed large necrotic foci at this stage. However, the VMR-0/tag7 cells, synthesizing very low amounts of Tag7 protein, exhibited dramatically different growth properties: they grew much slower; even after 4 months, no mice were killed by tumors arising from the transplanted cells and no necrotic foci were formed. Histological analysis of VMR-0/tag7 tumors showed a strong inhibition in mitotic rates and an enhanced rate of apoptosis compared to VMR-0 tumors. The tumors induced by transplantation of a mixture of VMR-0 and VMR-0/tag7 cells also grew much slower than VMR-0 cells alone, suggesting an activation of the immune system against tumor (tumor vaccination effect), which may be mediated through induction of CTL cells. Experiments with nude mice gave similar results. In fact at later stages of development in nude mice, VMR-0/tag7 tumors were completely eradicated. It seems that the effect of tag7 expression is complex and includes 381 Georgiev et al: Genes involved in the control of tumor progression in gene therapy activation of an immune response as well as a direct cytotoxicity. The higher tag7 expression in culture cells is incompatible with cell survival. Experiments are in progress for further elucidating the role of Tag7 and its exploitation for the development of tumor vaccines.
Cell lines CVCL_0226; CSML-100
CVCL_F849; VMR-0
CVCL_F850; VMR-100-Liv
CVCL_F851; VMR-100-Ov